Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; : e2300531, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318988

RESUMEN

Ocular neovascularization is a hallmark of several sight-threatening diseases, including diabetic retinopathy and age-related macular degeneration. Currently, available treatments are limited and often associated with side effects. Therefore, a novel approach to ocular neovascularization treatment through utilization of polymersomes from self-assembled sphingosine-grafted hyaluronic acid (HA-Sph) amphiphilic polymers is presented. The polymersomes are generated in spherical morphologies and sizes between 97.95 - 161.9 nm with homogenous size distributions. Experiments reveal that HA-Sph polymersomes, with concentrations ≥150 µg mL-1 , significantly inhibit the proliferation of human umbilical vein endothelial cells (HUVECs), while concurrently promoting the proliferation of retinal pigment epithelial cells. The polymersomes demonstrate gradual disintegration in vitro, leading to sustained release of sphingosine, which prolongs the inhibition of HUVEC proliferation (from 87.5% at 24 h to 35.2% viability at 96 h). The efficacy of polymersomes in inhibiting angiogenesis is confirmed through tube formation assay, revealing a substantial reduction in tube length compared to the control group. The findings also validate the ocular penetration capability of polymersomes through ex vivo whole porcine eye ocular penetration study, indicating their suitability for topical administration. Potentially, HA-Sph polymersomes can be harnessed to develop intricate drug delivery systems that protect the retina and effectively treat ocular diseases.

2.
Environ Res ; 238(Pt 2): 117131, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37709242

RESUMEN

Hydroxyapatite (HAp) is the most well-known bioceramic and widely utilized in bone tissue regeneration. Hydroxyapatite is biocompatible and bioactive however, it lacks osteogenesis, angiogenesis, and antibacterial properties. In the current study, we synthesized and evaluated a novel nickel (Ni) and silver (Ag) codoped hydroxyapatite (HAp) in comparison to undoped HAp and individually doped HAp samples. Extensive physicochemical characterizations like XRD, TEM, FE-SEM/EDS, FTIR, Raman spectroscopy, and TGA were performed, confirming the crystal structure and morphology of the synthesized HAp samples. All HAp samples exhibited elongated spherical-like nanoparticle morphologies with lengths between 34 and 44 nm and widths between 21 and 26 nm. The presence of dopant atoms, Ag and Ni, were observed in the doped/codoped HAp samples by EDS elemental mapping. Biocompatibility assessments using pre-osteoblast cells indicated high cell viability for all the doped and undoped HAp samples. Osteoinduction potential through alkaline phosphatase (ALP) activity measurements and alizarin red S (ARS) staining revealed enhanced calcium deposition in the presence of Ni-Ag codoped HAp compared to other HAp samples and control groups. This highlights the importance of Ni-Ag co-doping in promoting osteogenesis, surpassing the effects of silver doped HAp and nickel doped HAp. The potential of this novel Ni-Ag codoped HAp to induce osteogenesis in pre-osteoblast cells makes it a promising material for various applications in bone tissue engineering.


Asunto(s)
Durapatita , Plata , Durapatita/química , Plata/química , Níquel , Ingeniería de Tejidos , Huesos
3.
Int J Biol Macromol ; 250: 126237, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567538

RESUMEN

Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.

4.
Lab Chip ; 23(11): 2640-2653, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37183761

RESUMEN

Hydrodynamic cavitation (HC) is a phase change phenomenon, where energy release in a fluid occurs upon the collapse of bubbles, which form due to the low local pressures. During recent years, due to advances in lab-on-a-chip technologies, HC-on-a-chip (HCOC) and its potential applications have attracted considerable interest. Microfluidic devices enable the performance of controlled experiments by enabling spatial control over the cavitation process and by precisely monitoring its evolution. In this study, we propose the adjunctive use of HC to induce distinct zones of cellular injury and enhance the anticancer efficacy of Doxorubicin (DOX). HC caused different regions (lysis, necrosis, permeabilization, and unaffected regions) upon exposure of different cancer and normal cells to HC. Moreover, HC was also applied to the confluent cell monolayer following the DOX treatment. Here, it was shown that the combination of DOX and HC exhibited a more pronounced anticancer activity on cancer cells than DOX alone. The effect of HC on cell permeabilization was also proven by using carbon dots (CDs). Finally, the cell stiffness parameter, which was associated with cell proliferation, migration and metastasis, was investigated with the use of cancer cells and normal cells under HC exposure. The HCOC offers the advantage of creating well-defined zones of bio-responses upon HC exposure simultaneously within minutes, achieving cell lysis and molecular delivery through permeabilization by providing spatial control. In conclusion, micro scale hydrodynamic cavitation proposes a promising alternative to be used to increase the therapeutic efficacy of anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Hidrodinámica , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Antineoplásicos/farmacología
5.
ACS Omega ; 8(11): 9729-9747, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969402

RESUMEN

Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.

6.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36986546

RESUMEN

Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.

7.
Cytotechnology ; 74(6): 635-655, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36389283

RESUMEN

Lentivirus and adeno-associated viruses are invaluable tools for biotechnology applications due to their genetic material delivery abilities both in vitro and in vivo. However, their large-scale productions with Good Manufacturing Practices yield low efficiency when adherent and serum dependent HEK293 (Human Embryonic Kidney) cells are used as the host. To increase production efficiency, HEK293 cells are adapted to grow in suspension using commercially available and chemically defined serum-free mediums. Suspended cells can be transiently transfected for viral vector production; however, significant improvements are still needed to increase yield and thereby cost effectiveness. Here, we evaluated four most preferred commercially available mediums that are IVY, FreeStyle293, LV-MAX, and BalanCD HEK293 for the transient transfection feasibility of lentiviral (LV) and adeno-associated virus serotype 2 (AAV2) production in FlorabioHEK293 suspension cells. The highest transfection efficiency was over 90% and obtained by using polyethyleneimine (PEI) 25 K and by media adaptation in IVY without using any transfection enhancer. For the first time the feasibility of HEK293 cells, which were adapted to grow in suspension culture by Florabio and IVY media, were tested for virus production. This study demonstrates the best transfection medium for scalable and optimized production of Lentivirus and Adeno-Associated Virus in suspended HEK293 cell culture. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00551-1.

8.
ACS Appl Mater Interfaces ; 14(36): 40688-40697, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36048001

RESUMEN

Circulating tumor cells (CTCs) are essential biomarkers for cancer diagnosis. Although various devices have been designed to detect, enumerate, and isolate CTCs from blood, some of these devices could have some drawbacks, such as the requirement of labeling, long process time, and high cost. Here, we present a microfluidic device based on the concept of "hydrodynamic cavitation-on-chip (HCOC)", which can detect CTCs in the order of minutes. The working principle relies on the difference of the required inlet pressure for cavitation inception of working fluids when they pass through the microfluidic device. The interface among the solid/floating particles, liquid, and vapor phases plays an important role in the strength of the fluid to withstand the rupture and cavitation formation. To this end, four experimental groups, including the "cell culture medium", "medium + Jurkat cells", "medium + Jurkat cells + CTCs", and "medium + CTCs", were tested as a proof of concept with two sets of fabricated microfluidic chips with the same geometrical dimensions, in which one set contained structural sidewall roughness elements. Jurkat cells were used to mimic white blood cells, and MDA-MB-231 cells were spiked into the medium as CTCs. Accordingly, the group with CTCs led to detectable earlier cavitation inception. Additionally, the effect of the CTC concentration on cavitation inception and the effect of the presence of sidewall roughness elements on the earlier inception were evaluated. Furthermore, CTC detection tests were performed with cancer cell lines spiked in blood samples from healthy donors. The results showed that this approach, HCOC, could be a potential approach to detect the presence of CTCs based on cavitation phenomenon and offer a cheap, user-friendly, and rapid tool with no requirement for any biomarker or extensive films acting as a biosensor. This approach also possesses straightforward application procedures to be employed for detection of CTCs.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular/métodos , Humanos , Hidrodinámica , Dispositivos Laboratorio en un Chip , Células Neoplásicas Circulantes/patología
9.
Mini Rev Med Chem ; 22(14): 1828-1846, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264089

RESUMEN

One of the common clinical complications of diabetes is diabetic neuropathy affecting the nervous system. Painful diabetic neuropathy is widespread and highly prevalent. At least 50% of diabetes patients eventually develop diabetic neuropathy. The four main types of diabetic neuropathy are peripheral neuropathy, autonomic neuropathy, proximal neuropathy (diabetic polyradiculopathy), and mononeuropathy (Focal neuropathy). Glucose control remains the common therapy for diabetic neuropathy due to limited knowledge on early biomarkers that are expressed during nerve damage, thereby limiting the cure through pharmacotherapy. Glucose control dramatically reduces the onset of neuropathy in type 1 diabetes but proves to be less effective in type 2 diabetes. Therefore, the focus is on various herbal remedies for prevention and treatment. There is numerous research on the use of anticonvulsants and antidepressants for the management of pain in diabetic neuropathy. Extensive research is being conducted on natural products, including the isolation of pure compounds like flavonoids from plants and their effect on diabetic neuropathy. This review focuses on the use of important flavonoids such as flavanols (e.g., quercetin, rutin, kaempferol, and isorhamnetin), flavanones (e.g., hesperidin, naringenin and class eriodictyol), and flavones (e.g., apigenin, luteolin, tangeretin, chrysin, and diosmin) for the prevention and treatment of diabetic neuropathy. The mechanisms of action of flavonoids against diabetic neuropathy by their antioxidant, anti-inflammation, anti-glycation properties, etc., are also covered in this review article.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Glucemia , Neuropatías Diabéticas/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Rutina
10.
Carbohydr Polym ; 283: 119142, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35153015

RESUMEN

Bone repair is a self-healing process. However, critical-sized bone defects need bone augmentation where bone tissue engineering plays vital role. Bone tissue Engineering (BTE) requires unique combinations of scaffolds, cells, and bio-signal molecules. Bone scaffold materials should be biocompatible, bioresorbable and exhibit biomimetic properties. Natural polymers, acquiring cell binding motives, producing nontoxic degradation products and tunable properties are ideal materials. Anionic polysaccharides of natural origin mimic mammalian ECM components and even the group called GAGs (Glycosaminoglycan) are actual components of ECM possessing various functions including cell adhesion, cell signaling, maintenance of homeostasis and inflammation control. Among them, anionic polysaccharides provide stabilization and sustained release of growth factors (GFs), porosity, calcium phosphate nucleation site, viscoelasticity, and water retention. Therefore, anionic polysaccharides are unique biomaterials for BTE. In this review, we have summarized the highlights of bone tissue engineering and recent applications of anionic polysaccharides in BTE.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Huesos/metabolismo , Polisacáridos/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Aniones/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biomiméticos/farmacología , Adhesión Celular/efectos de los fármacos , Glicosaminoglicanos/química , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Polímeros/química , Polisacáridos/química , Porosidad , Ratas
11.
Sci Rep ; 11(1): 13053, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158543

RESUMEN

Detection of low abundance target DNA/RNA for clinical or research purposes is challenging because the target sequences can be hidden under a large background of human genomic or non-human metagenomic sequences. We describe a probe-based capture method to enrich for target sequences with DNA-clicked iron oxide nanoparticles. Our method was tested against commercial capture assays using streptavidin beads, on a set of probes derived from a common genotype of the hepatitis C virus. We showed that our method is more specific and sensitive, most likely due to the combination of an inert silica coating and a high density of DNA probes clicked to the nanoparticles. This facilitates target capture below the limits of detection for TaqMan qPCR, and we believe that this method has the potential to transform management of infectious diseases.


Asunto(s)
Química Clic , ADN/análisis , Nanopartículas Magnéticas de Óxido de Hierro/química , Oligonucleótidos/química , ARN/análisis , Genoma Viral , Hepacivirus/genética , Hepatitis/sangre , Hepatitis/virología , Humanos , Estreptavidina/química
12.
Nanomaterials (Basel) ; 10(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570885

RESUMEN

The eye is a complex organ consisting of several protective barriers and particular defense mechanisms. Since this organ is exposed to various infections, genetic disorders, and visual impairments it is essential to provide necessary drugs through the appropriate delivery routes and vehicles. The topical route of administration, as the most commonly used approach, maybe inefficient due to low drug bioavailability. New generation safe, effective, and targeted drug delivery systems based on nanocarriers have the capability to circumvent limitations associated with the complex anatomy of the eye. Nanotechnology, through various nanoparticles like niosomes, liposomes, micelles, dendrimers, and different polymeric vesicles play an active role in ophthalmology and ocular drug delivery systems. Niosomes, which are nano-vesicles composed of non-ionic surfactants, are emerging nanocarriers in drug delivery applications due to their solution/storage stability and cost-effectiveness. Additionally, they are biocompatible, biodegradable, flexible in structure, and suitable for loading both hydrophobic and hydrophilic drugs. These characteristics make niosomes promising nanocarriers in the treatment of ocular diseases. Hereby, we review niosome based drug delivery approaches in ophthalmology starting with different preparation methods of niosomes, drug loading/release mechanisms, characterization techniques of niosome nanocarriers and eventually successful applications in the treatment of ocular disorders.

13.
Molecules ; 25(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397080

RESUMEN

Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/uso terapéutico , Humanos , Nanopartículas/efectos adversos , Nanotecnología
14.
Acta Biomater ; 100: 244-254, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31557533

RESUMEN

Glaucoma is a leading cause of irreversible blindness worldwide. Current treatments of glaucoma involve lowering the IOP by means of decreasing aqueous humor production or increasing non-trabecular aqueous humor outflow with the help of IOP-lowering eye drops, nanotechnology enabled glaucoma drainage implants, and trabeculectomy. However, there is currently no effective and permanent cure for this disease. In order to investigate new therapeutic strategies, three dimensional (3D) biomimetic trabecular meshwork (TM) models are in demand. Therefore, we adapted MAX8B, a peptide hydrogel system to bioengineer a 3D trabecular meshwork scaffold. We assessed mechanical and bio-instructive properties of this engineered tissue matrix by using rheological analysis, 3D cell culture and imaging techniques. The scaffold material exhibited shear-thinning ability and biocompatibility for proper hTM growth and proliferation indicating a potential utilization as an injectable implant. Additionally, by using a perfusion system, MAX8B scaffold was tested as an in vitro platform for investigating the effect of Dexamethasone (Dex) on trabecular meshwork outflow facility. The physiological response of hTM cells within the scaffold to Dex treatment clearly supported the effectiveness of this 3D model as a drug-testing platform, which can accelerate discovery of new therapeutic targets for glaucoma. STATEMENT OF SIGNIFICANCE: Artificial 3D-TM (3-dimentional Trabecular Meshwork) developed here with hTM (human TM) cells seeded on peptide-hydrogel scaffolds exhibits the mechanical strength and physiological properties mimicking the native TM tissue. Besides serving a novel and effective 3D-TM model, the MAX8B hydrogel could potentially function as an injectable trabecular meshwork implant.


Asunto(s)
Hidrogeles/farmacología , Inyecciones , Péptidos/farmacología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/fisiología , Secuencia de Aminoácidos , Humanos , Imagenología Tridimensional , Persona de Mediana Edad , Concentración Osmolar , Péptidos/química , Reología
15.
Turk J Biol ; 43: 89-98, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410078

RESUMEN

Human trabecular meshwork (hTM) cell isolation in academic settings utilizes the motile nature of these cells, allowing them to migrate away from the explant and proliferate on distal regions of the culture substrate. Corneoscleral rims used for transplantation are a potential source of explants for the establishment of hTM cell cultures. However, cell isolation and the initiation of primary cell cultures from ocular tissues stored in Optisol-GS medium for an extended period of time (>6 days) has proven difficult, since Optisol-GS remarkably reduces cell viability and cellularity. Therefore, explants obtained from ocular tissues stored in Optisol-GS do not often provide adequate cell yield to initiate primary cell cultures if conventional culture techniques are used. Therefore, the majority of the research on primary hTM cell isolation has been accomplished using donor tissue obtained within 72 h postmortem. The goal of this study was to develop an hTM cell isolation procedure from nontransplantable ocular materials, utilizing the anchorage dependency of TM cells. This procedure yielded functionally viable cells, eficiently dissociated from the trabecular meshwork. Isolated cells demonstrated typical hTM cell characteristics including monolayer formation, contact inhibition, phagocytosis, and responses to glucocorticoid exposure. To the best of our knowledge, this is the first time an expired explant has been utilized in the successful isolation of hTM cells. Our results clearly demonstrate the advantage of increasing the anchor points of hTM cells for enhanced cell migration out from the explants, which have limited cell proliferative capacity.

16.
Sci Rep ; 8(1): 3374, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463859

RESUMEN

Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS2) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS2, clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS2-binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS2 from tailing ponds and downstream mining processes.

17.
Exp Eye Res ; 165: 109-117, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28986145

RESUMEN

Crystallins are a major family of proteins located within the lens of the eye. Cataracts are thought to be due to the formation of insoluble fibrillar aggregates, which are largely composed of proteins from the crystallin family. Today the only cataract treatment that exists is surgery and this can be difficult to access for individuals in the developing world. Development of novel pharmacotherapeutic approaches for the treatment of cataract rests on the specific targeting of these structures. ßB2-crystallin, a member of ß-crystallin family, is a large component of the crystallin proteins within the lens, and as such was used to form model fibrils in vitro. Peptides were identified, using phage display techniques, that bound to these fibrils with high affinity. Fibrillation of recombinantly expressed human ßB2-crystallin was performed in 10% (v/v) trifluoroethanol (TFE) solution (pH 2.0) at various temperatures, and its amyloid-like structure was confirmed using Thioflavin-T (ThT) assay, transmission electron microscopy (TEM), and X-ray fiber diffraction (XRFD) analysis. Affinity of identified phage-displayed peptides were analyzed using enzyme-linked immunosorbent assay (ELISA). Specific binding of a cyclic peptide (CKQFKDTTC) showed the highest affinity, which was confirmed using a competitive inhibition assay.


Asunto(s)
Catarata/metabolismo , Péptidos/metabolismo , Unión Proteica/fisiología , Cadena B de beta-Cristalina/metabolismo , Análisis de Varianza , Bacteriófagos , Catarata/terapia , Ensayo de Inmunoadsorción Enzimática , Humanos , Microscopía Electrónica de Transmisión , Cadena B de beta-Cristalina/química
18.
Proteins ; 85(11): 2024-2035, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28734030

RESUMEN

Discovering or designing biofunctionalized materials with improved quality highly depends on the ability to manipulate and control the peptide-inorganic interaction. Various peptides can be used as assemblers, synthesizers, and linkers in the material syntheses. In another context, specific and selective material-binding peptides can be used as recognition blocks in mining applications. In this study, we propose a new in silico method to select short 4-mer peptides with high affinity and selectivity for a given target material. This method is illustrated with the calcite (104) surface as an example, which has been experimentally validated. A calcite binding peptide can play an important role in our understanding of biomineralization. A practical aspect of calcite is a need for it to be selectively depressed in mining sites.


Asunto(s)
Biología Computacional/métodos , Compuestos Inorgánicos/química , Compuestos Inorgánicos/metabolismo , Péptidos/química , Péptidos/metabolismo , Carbonato de Calcio , Minería , Simulación de Dinámica Molecular , Unión Proteica
19.
PLoS One ; 12(5): e0177991, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542382

RESUMEN

Environmental factors, mainly oxidative stress and exposure to sunlight, induce the oxidation, cross-linking, cleavage, and deamination of crystallin proteins, resulting in their aggregation and, ultimately, cataract formation. Various denaturants have been used to initiate the aggregation of crystallin proteins in vitro. All of these regimens, however, are obviously far from replicating conditions that exist in vivo that lead to cataract formation. In fact, it is our supposition that only UV-B radiation may mimic the observed in vivo cause of crystallin alteration leading to cataract formation. This means of inducing cataract formation may provide the most appropriate in vitro platform for in-depth study of the fundamental cataractous fibril properties and allow for testing of possible treatment strategies. Herein, we showed that cataractous fibrils can be formed using UV-B radiation from α:ß:γ crystallin protein mixtures. Characterization of the properties of formed aggregates confirmed the development of amyloid-like fibrils, which are in cross-ß-pattern and possibly in anti-parallel ß-sheet arrangement. Furthermore, we were also able to confirm that the presence of the molecular chaperone, α-crystallin, was able to inhibit fibril formation, as observed for 'naturally' occurring fibrils. Finally, the time-dependent fibrillation profile was found to be similar to the gradual formation of age-related nuclear cataracts. This data provided evidence for the initiation of fibril formation from physiologically relevant crystallin mixtures using UV-B radiation, and that the formed fibrils had several traits similar to that expected from cataracts developing in vivo.


Asunto(s)
Amiloide/metabolismo , Catarata/metabolismo , Rayos Ultravioleta/efectos adversos , alfa-Cristalinas/metabolismo , gamma-Cristalinas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
20.
J Nanopart Res ; 19(2): 74, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28260966

RESUMEN

Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles. Graphical abstract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...